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ABSTRACT

A new method has been devised to determine the spherical
harmonic coefficients of the lunar gravity field. This method
consists of a two-step data reduction and estimation process. In
the first step, a weighted least-squares empirical orbit deter-
mination scheme is applied to Doppler tracking data from lunar
orbits to estimate long-period Kepler elements and rates. Each
of the Kepler elements is represented by an independent function
of time. The long-period perturbing effects of the earth, sun,
and solar radiation are explicitly modeled in this scheme. Kepler
element variations estimated by this empirical processor are then
ascribed to the non-central lunar gravitation features. Doppler
data are reduced in this manner for as many orbits as are available.
In the second step, the Kepler element rates are used as input
to a second least-squares processor that estimates lunar gravity
coefficients using the long-period Lagrange perturbation equations.

Pseudo Doppler data have 'been generated simulating two
different lunar orbits. This analysis included the perturbing
effects of the L1 lunar gravity field, the earth, the sun, and solar
radiation pressure. Orbit determinations were performed on these
data and long-period orbital elements obtained. The Kepler element
rates from these solutions were used to recover L1 lunar gravity
coefficients. Overall results of this controlled experiment show
that lunar gravity coefficients can be accurately determined and
that the method is dynamically consistent with long-period pertur-

bation theory.
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INTRODUCTION

The long-period motion of a close lunar satellite is
governed by a perturbed Newtonian gravitational law of attraction.
The principal perturbations arise from the non-central properties
of the lunar mass distribution and from the disturbing effects
of the earth, the sun, and solar radiation pressure. These pertur-
bations are small; their effects are at least one thousand times
smaller than the inverse square attraction of the moon.

For the case of satellite motion in a non-central gravity
field, the long-period Kepler elements of the orbit become complex
functions of time. One method of representing this motion is to

(1)

model each of the Kepler elements as independent time functions .
This representation forms the basis of an empirical orbit deter-
mination and selenodesy method. In this approach, gravitational
effects are determined, hence the concept is not constrained to
any assumed lunar gravity model. Since expressions for both

third body and solar radiation perturbations are well known(2’3),
the long-period variations in the orbital elements can be adjusted
to remove these effects. The resulting orbital element variations
can therefore be ascribed to non-central lunar gravity features.

Spherical harmonic coefficients in the lunar gravity
field are determined using a two-step data reduction and estima-
tion process. In the first step, a weighted least-squares orbit
determination processor is applied to Doppler tracking data from
lunar orbits to estimate long-period Kepler elements and rates.
In the second step, the Kepler element rates are used as input
to a second weighted least-squares processor that estimates lunar
gravity coefficients using the long-period Lagrange perturbation
equations.



This paper presents the theory and equations which
constitute this method. An example is given, using pseudo
Doppler data, to show the effectiveness of the method to deter-
mine lunar gravity coefficients.

MATHEMATICAL THEORY

The dynamical state of a satellite in lunar orbit,
referenced to moon-centered inertial coordinates, is uniquely
specified by the six-~vector of Kepler elements;
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e
- | I
|
LM
The equations of motion are the six first order, non-linear,
long-period Lagrange perturbation equations,
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where the mean motion n ;J-ji, u\is the lunar gravity
a

constant and R'is the disturbing function arising from
perturbations averaged over the mean anomaly.



The disturbing function assumed has components
arising from the non-central part of lunar gravity, Rk, earth

and sun perturbations, R' and Rg, and solar radiation pressure,

R__.. Hence,
sSY

'= \J \ + T + ) (8)
R R\ + Re R® Rsr

In vector notation the long-period perturbation equations
have the following functional form:

&K _ = (9)
3t = f(k ,t)

1
where k is the five vector of Kepler elements excluding the
mean anomaly. In order to carry out a solution for these
equations, the disturbing function must be specified.

The long-period disturbing function for non-central

(4)

lunar gravity features has been derived by Kaula and is
given as follows:
§ oy R (10)
R, = u, ——— P(I,e)$s (w,0,0) 10
L 2=2 m=0 L aSL+l Ampq
where:
2 (11)
P(I,e) = Z Fmp(I)Glpq(e)
p=0
Rg is the mean lunar radius, h is the integer part of i&%EL
and
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where t is summed to the lesser of p or h, and c is summed
over all values which make the binomial coefficients nonzero.
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where 6 is the angular displacement between the moon-fixed
(selenographic) axis system and the inertial system. The
parameters {sz, ng} are the set of lunar harmonic coefficients

which characterize the non-central parts of the gravity field.

The averaging with respect to the mean anomaly of the
third body disturbing function has been performed by Lorell and

Liu(s) and has the following form:

|_— L
R3 = r3 [F2 + F3] (15)
where:
a\? 1 3 2 2,2 1, . 38%,. 2
' — — — -—
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: 3 2 1
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r3 4 4 4




and A = u*P, B = u+-Q. u is the unit vector in the direction
of the third body, P is a unit vector to perifocus and Q is
a unit vector in the orbit plane orthogonal to P (see Figure 1).

The disturbing function for solar radiation pressure

(6)

has been calculated by Fisher and is given as follows:

2%
I
R sr 2wJﬁ Ray dm (16)
o
where R _=Fr-u

sSr (O]

and ﬁ@ is a unit vector in the direction of the sun and F is

the magnitude of solar acceleration:

2

;9) (1+a) . (17)
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Here X is the satellite effective cross-sectional area, m is
the mass, S@ is the solar constant, r, the distance to the sun,

a is the reflection coefficient, and ¢, is the speed of light.

The solar radiation pressure only acts on the satellite when it
is in sunlight. A test to determine the visibility of the sun
is (see Figure 2):

vl < |8l Solar radiation perturbations
are zero
[v] > |8] Solar radiation perturbations

are present.

where:
-1 Re
IBI = |tan r—l
i : -1 -r.r',
|vy| = |cos |
rr'
and
=Y -F



The general form of the perturbation equations
for a lunar satellite under the influence of non-central lunar
gravity, earth, sun, and solar radiation effects is as follows:
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where the sum over % and m represents an arbitrary gravity
field of degree ¢ and order m for the moon. These long-period
equations form the analytical basis for the development of the
empirical orbit determination method.

The long-period time dependence induced in each of the
Kepler elements by the non-central gravity perturbations has
been specified by equation(18). Since these equations are non-
linear, general closed form solutions are not obtainable. Since
the non-central effects are extremely small compared to the
central body term, solutions can be approximated by a finite series.

If an analytic quadrature is performed on each perturba-
tion equation, a set of integral equations results:

t
k(t) = k() + Jﬂ f(k',t) at (19)
t
O

The kernels, or disturbing functions, appearing in this equation
are non-separable, non-linear functions. If only the perturba-
tions arising from the lunar disturbing functions are considered,
these kernels can be categorized into two types:



1. f(k',t) = £(k") autonomous (20)
2. f£(k',t) = g(k")sin m th + h(k')cos m th (21)

m=2,3,cccccees

where Wy is the rotational rate of the moon about its spin axis

(wg = .26617033 x 10 6 rad/sec) and m is the order index for

the spherical harmonic terms of the lunar gravity field. This
categorization does not apply when the standard Kepler elements
become singular, for nearly circular, nearly equatorial orbits.
However, a similar approximation can be made for a determinate
orbital element set. The first or autonomous kernel corresponds
to zonal perturbations and the second to tesseral and sectorial
perturbations. If solutions to equation(19) are sought which
are valid over periods of time of about 24 hours, and if it is
assumed that the magnitude of variation in k' over these periods

is small, then £(k'), g(k'), and h(k') can be considered
constant.

Solutions to equations possessing autonomous kernels
(zonal perturbations) have the following simple form:

k(t) = E(to) + E[E'(to)](t-to) (22)

These solutions have the linear properties of secular variations.
Solutions for the non-autonomous kernels can be given as follows:

k(t) = C [k (e )] + Tylk! (t )lsin m wg (t-t )

L

+ 63[2'(to)]cos m o, (t-t_) (23)

\

zheie Cl’ C2, and C3 are vector constants and Cl(k'(to)] = k(to) -
C3[k'(to)]-

Since the moon rotates with a period of 27.32 days
about its spin axis, the solutions given by equation (23) for
long-periodic variations arising from tesseral and sectorial
terms can be further simplified. If the time period over which
equation (23) is valid (approximately 24 hours) is much smaller
than the period of a spherical harmonic perturbing term, this
solution can be expanded in a truncated Taylor series:



kK(t) = 61 [x' (k)] + 62[1?' (t,)] [mw«(t—to) Forveeenn ]
2 2
_ —, m (.0& 2
+ C3[k (to)][l - 5 (t—to) S R |
or
k(t) = Kb + Klt + Kztz toenns (24)

where Kj represent vector constants.

Hence the solutions, or functional form, for the Kepler
elements which best represent secular and long-period effects
are those given by egquations(22) and (24). Two typical Kepler
elements, @ (t) and e(t), can be represented as follows:

Q(t)

Qo + Qlt (secular variation)

e(t) e, + elt + e2t2 (long-period variations)

The terms Qo' Ql’ e r © e, are Keplerian constants determined

ll
by fitting tracking data.

The six~dimensional time series used to represent the
Keplerian motion of a lunar satellite is:

a(t) = a (constant)
e(t) = e + e.t + e t2 + e+ ge_ + se
o 1 2 - e sr
2
I(t) = IO + Ilt + 12t + 510 + 51@ + slsr g (25)
= Q +Qt+§2t2+6§2+§2+9
Q) = o 1 2 @ SR Sgy
w(t) = w +wt+wt2+6w + Sw_ + sw
o 1 2 ® o sr
) J

M(t) = MO + Mlt + M2t



The orbital element variations 6k' are found by numerical inte-
grations. The third body and solar radiation pressure perturba-
tions used are those presented earlier. No explicit third body
and radiation pressure perturbations are modeled for the mean
anomaly. Hence the time series includes the perturbations of

the moon, earth, sun, and solar radiation. The reasons for this
representatinn are associated with the semi-major axis determina-
tion and are discussed later in this paper.

Quadratic terms are used in the time series since
for time periods of about 24 hours these will adequately
represent long-period perturbations of up to order seven (m = 7).

DOPPLER DATA REDUCTION

The Doppler observation (¢) is a scalar_quantity that
is a non-linear function of the satellite state, k, the relative
earth-moon configuration, and the earth-based tracking station
position and rotational velocity. During the orbit determination
only the estimates of the satellite state are refined. The

tracking data 6obs are related to the satellite state as follows(7)

bobs (£) = BIK(E)] + (26)

where n is the random noise associated with the physical measure-
ments. The measurement errors are assumed to have the following
properties:

E[n] =0

E[n?] = o2 (27)

where E is the expectation operator and 02 is the variance of
the Doppler noise.

Since the Doppler is a non-linear function of the
Kepler state, equation(26) must be linearized about a reference

state, k*(t). Hence:

. | 5 — 28
8 (t,) = (3":\’ AR (E) + (28)
where: okl g = &
B () = o (£) = §(ty)
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Using a similar procedure, a linear relationship is obtained
relating the Kepler state k and the Keplerian parameter wvector
—_ —

K (nx1). 1

a
e
e

=
[
®

(29)

O N = O

=

Mzg
L7

Since the Keplerian parameters are constant over the trajectory,

an expansion of K can be performed about a reference set K* at
some time to.

ak = 3K

AK (t ) (30)
3K °

K= K*

The linearized Doppler equation (28) can now be expressed in
terms of the Keplerian solution parameters.

Ap(t,) = H(tk)Aﬁ(to)+ n (31)
where:
H(t,) = (3—3) 3k
okl K[|z _ =

For a batch of r Doppler measurements equation(31l) can be gen-
eralized as follows:

AF = [H]IAK + 7 + 5 (32)
where:
AD is the (r x 1) observation residual
vector
H is the linearized set of functions

relating the observation and the
Keplerian parameters (r x n)
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AK is the column vector of Keplerian
parameter deviations (n x 1)

is an (r x 1) vector of observation
noise

3

s is an (r x 1) vector of short-periodic
errors.

Since the Keplerian parameters K only represent the long-periodic
dynamics of the orbit, at any point in time there will always be

a systematic residual (s) associated with the unmodeled short-
periodic satellite variations.

The next step is to choose an estimation scheme which
minimizes the observational error and yields a best estimate for
the Keplerian parameters. The weighted least-squares estimator
was chosen to perform the data reduction. The error function,
e, for r observations is given as follows:

e = [V WV] (V= 7+s)
or (33)

e = (AF - HAR)T W(AF - HARK)

where W is assumed to be a (r x r) diagonal matrix. For a
minimum the first variation of the error function must vanish.
Transposing and solving,

AR = [HTWH]'l HiW 3 (34)

Since this minimization was obtained by linearizing a set of non-
linear equations, the estimation is performed iteratively.

SEMI-MAJOR AXIS DETERMINATION

Studies(a) have shown that the least-squares process has
convergence problems when the semi-major axis is included as an
independent parameter. Since the mean motion of the orbit, even
in the presence of perturbations, is nearly inversely proportional
to the semi-major axis raised to the three halves power, the esti-
mated mean motion can be used to imply a semi-major axis. The
constraint equation between the mean motion and the semi-major
axis must include the long-period effects of the earth, sun, solar
radiation and some representation for the lunar field.
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The average value of the semi-major axis (ao) with

respect to the mean anomaly is found as follows:

and

. u

M =’/—$§-+ M + M +M +M (35)
a
O

A

where Ml and M2 are the estimated Keplerian parameters. Since
this is a non-linear equation in ayr it is solved using Newton's
Method.

For the case of zonal perturbations on an earth satellite,

Kozai(g) has shown that a mean value of the semi-major axis a
yields the average satellite position in the orbit. This value
is derived such that the deviations in the position of the orbit
due to perturbations averaged over the orbit yield only short-
period variations.

21T ="
S sT(3) aM = 5 b, cos(eM + 4.} (36)
27 Jo g=1 © &

where 6r = r and bg and dE are constants.

osculating rlong—period
Hence the value a yields the proper mean position over the orbit.
Kozai has shown that a mean value correction in the semi-major axis

(10)

is only required for even degree zonals and none for tesseral

and sectorial terms(ll). Analysis has shown that mean value

corrections for the sun and solar radiation perturbations are on
the order of one foot; hence no factor is included for these

terms. A mean value correction for earth perturbations is included.
The relationship between the average value a, and the mean value

a for the C and earth perturbations are presented as examples.

20
For C20 b
Re|” (1-3/2 sin’1)

a (1-e2)3/2
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For the earth

2
n
3 = ao[l + n—"’) (1-3/2 sinzI)]

The general procedure for implying a mean value semi-
major axis has two steps. First, the average value a, is

determined once per iteration using equation(35). Then, the

mean value a is calculated as follows:

a = ao[l +§ €00 + ee]

for only even values of 2. The e terms are the mean value
corrections.

The quantity a is introduced to make long-period
perturbation theory represent the average satellite orbit. Since
this variable is introduced to insure compatibility between the
long-period and associated rectangular equations of motion, it
is only used for Doppler data reduction.

After convergence is reached, the mean anomaly rate

M is adjusted to remove the earth, sun, and solar radiation
effects and evaluated at the mid-point of the data span.

t-MQ—M—M (37)

M&= M1+2M ® sr

2

Here MQ is the mean anomaly rate arising only from lunar gravity.

The average semi-major axis value, agr for the lunar gravity is

found by solving:
. _
g =[S+ T w (38)
\ a&3 2 ,m %,m

It is this value of the semi-major axis that completes the K
parameter set and is used for gravity field determination.
One such value of a& is found for each solution.

During the determination of the semi-major axis it
is necessary to specify some model for the lunar gravity field
in the constraint equations. Analysis has shown that the entire
selenodesy process can be performed without any a priori lunar
field if it is done iteratively.
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SOLUTION PARAMETERS

The output from processing a batch of Doppler measure-
ments is a best estimate for a set of Keplerian parameters,

A

K. Since the third body and solar radiation perturbations are
modeled separately in the process and the mean anomaly para-
meter is adjusted for these effects, the Keplerian parameters
represent the variation in the Kepler elements due only to the
non-central part of lunar gravity. These solution parameters
give a simultaneous time history of the Kepler elements and
element rates valid over the Doppler data span. A detailed block
diagram of the orbit determination process is shown in Figure 3.

The time histories of the Kepler elements and rates
are used as input to a second processor which fits lunar gravity
harmonics to the Kepler element rates. Since the solution para-
meters provide continuous time functions for the orbital elements
and rates they can be sampled at any desired frequency. The
long-period lunar gravity effects have periods which are much
greater than a typical lunar orbiter period, hence there will be
no aliasing of gravity information if samples are evaluated once
per satellite period. The five Kepler element rates used for
gravity estimation are:

e
Il
o S o Do e (D

— -

Since the semi-major axis rate is zero in long-period theory,
it is not used.

The five orbital element rates are simultaneously pro-
cessed to obtain gravity coefficients. Since the data set con-

sists of five different gquantities (e, I, @, w, M), a weighting
matrix is required to define the relative accuracy of each of
the rates.

If the orbit determination processor could model the
Doppler such that the residuals remaining after convergence were
T -1 R
normally distributed random errors, the [H WH] matrix in

equation(34) would be the covariance matrix of the K solution.
Since only long-period satellite dynamics are represented in the
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process, the [HTWH]_l matrix is not the covariance matrix of the

process(lz). However the terms in the [HTWH]_l matrix do reflect

sensitivity and correlations among the solution parameters, hence
it is assumed for weighting purposes that these terms can be
regarded as variances and covariances in the conventional manner.

The weighting matrix for the orbital element rates, A,

is a (5x5) matrix having the following form(l3):
3 12 "13 14 15
T o 2
21 $
A'-l = | . g 2

c e e e e (39)

2
T ..........G¢§
L 51 M J

where cﬁz are the error variances among the rates and Tij
are the covariances. It is assumed that the mean error of
the Keplerian parameters is zero. Each of the orbital element
rates has the following form:

Q = Ql + Zta

The variance of the error in 9 is found as follows:

2: _ i L 2 o o 2.2 2
o%s = E[(Ql Ql) + 4t(s2l Ql)(ﬂz - 92) + 4t (92 - 92) ]
2 2 2 2
or g% = o3 + 4t covi(er €2 ) + 4t° o%
Q 0 2,70, Qg (40)
where £ example: ¢ =g, -
or example: le Ql Ql etc.

The covariance terms among the rates (e.gd. cov(eéei)) are for-
mulated in a similar way:
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cov(es €%) = cov(es €~ ) + 2t[cov(es e~ ) + coviea e~ )]
Q w Ql wl Ql w2 92 wl

+ 4t2 cov(e& g~ ) (42)
2 92
Hence each of the entries in the A matrix can be found

from the appropriate slot in the [HTWH]—l matrix. The weighting
matrix is automatically obtained for each set of orbital element
rates.

HARMONIC COEFFICIENT ESTIMATION

The lunar gravity field determination is performed in
a second weighted least-squares processor which uses as input
the Kepler element rates, the estimated Kepler elements, and a
weighting matrix and outputs a set of spherical harmonic coef-
ficients (see Figure 4). The long-period perturbation equations
are of the form:

k=%(k',p,t) (43)
where p is the vector (nx1l) of lunar gravity coefficients:
p == (44)

Since the gravity parameters appear as linear functions in the
perturbation equations, equation (43) can be expressed as

K=r(E") p (45)

where F is a (5xn) matrix of partial derivatives of the element
rates with respect to the gravity coefficients:

™ R
Je Je e 3e
3C,, acm’as21 TTes,
FE') = | ! : (46)
3M M M aM
Laczo TTAC 88, TT 9S,




The least-squares algorithm for the gravity coefficient
estimation is as follows:

p=[Far] T FT A K (47)
N Y
(n x 1) (n x n) (n x 1)

where p is the best estimate of the lunar gravity parameters.

PSEUDO DATA SIMULATIONS

In order to demonstrate the method, pseudo Doppler data
were generated using numerically integrated source trajectories
and converged solutions obtained. The estimated Keplerian para-
meters from two such typical convergences are presented. In both

cases the L1 Lunar gravity field(l4) was assumed (see below)
and the earth, sun, and solar radiation perturbations were also
included. No noise or biases were added to the pseudo data.

L1l Lunar Gravity Field

C. = -2.071 x 10”4
20 _4
Cyy = -207 x 10
-4
C.. = .21 x 10
30 _4
C.,, = .34 x 10
31 _g
Cy3 = .26 x 10

The first simulation was generated for a Lunar Orbiter
V orbit (polar). The Doppler data span contains tracking from
three stations (Goldstone, California, Madrid, Spain, and Woomera,
Australia) and is approximately 21 hours 30 minutes in duration.
The epoch data and initial conditions for this orbit are:

Epoch Date: Aug. 9, 1967 7 hours 20 min.

Initial Conditions: (Selenographic)
= 8,324,332 ft. e = ,27618984
I = 849764923 Q@ = 7022050009

w = 128616071 M 244273644
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The Doppler residuals (Ap) associated with this convergence are
shown in Figure 5. These residuals are systematic and have the
general form of the unmodeled short-period orbital variations.
The residuals possess a mean of .022 feet per second (fps) and a
standard deviation of o = .11 fps.

In order to determine the quality of this converged
solution, comparisons are made between the numerically integrated
source trajectory and the converged solution. Figures 6-8 show
the variations in the six Kepler elements for both the converged
solution and the source trajectory. The variations presented
for the eccentricity (e) and the three Euler angles (I,Q,w) (see
Figures 6 and 7) show the actual variations of these elements
plotted on common axes. Since the variations in the mean anomaly
are very large and the semi-major axis has a large magnitude, the
differences in the converged solution and the source trajectory
values are shown (see Figure 8). A plot of the rectangular posi-
tion difference is shown in Figure 9. The 450 ft bias in position
difference is relatable to the error bias in the estimated eccen-
tricity parameter at epoch. The slight secular error in position
is attributable to small errors in the mean anomaly and eccentricity
rates.

The second data simulation was generated for a Lunar
Orbiter III (Apollo type) orbit. This data span contains track-
ing data from the same three stations and is approximately 10
hours in duration. The epoch date and initial conditions for
this orbit are:

Epoch Date: Aug. 30, 1967 20 hours 55 min.

Initial Conditions: (Selenographic)
a = 6,457,093 ft. e = ,04348376
I = 202899211 8 = 632970000
w = 354205800 M = 194990793

The Doppler residuals associated with this solution are shown in
Figure 10. These residuals have a mean of -.018 fps and a stand-
ard deviation of o = .15 fps.

Variations in the eccentricity and the Euler angles of
this orbit are shown in Figures 11 and 12. Semi-major axis, mean
....... ly, and position differences are shown in Figures 13 and 14.
As can be seen from Figure 11 the inclination parameter has a
bias error at epoch and a slight slope error. The position
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difference has a bias of 400 ft. which is attributable to
biases in estimates of the eccentricity and semi-major axis
parameters.

The slight biases and trend errors experienced in
both these solutions are a reflection of nearly equal sensiti-
vities among some Keplerian parameters and the aliasing effects
of unmodeled short-period orbit variations. The presence of
these nearly equal sensitivities among the Keplerian parameters

leads to high correlations in the [HTWH]—l matrix. These corre-
lations lead to linear combinations among the state parameters
being estimated.

GRAVITY FIELD DETERMINATION

In order to demonstrate the capabilities of this method,
the two pseudo data solutions previously presented were used
to determine the L1 lunar gravity field assumed in the source
trajectory. Since the orbital period of the Orbiter V satellite
is 3.2 hours and the data span 21 hours, this converged solution
contributes seven sets of Kepler element rates to the harmonic
estimator. The Orbiter IIT satellite has an orbital period of
2.1 hours and a data span of 10 hours; consequently this solution
contributes five sets of Kepler element rates.

The numerical values for the L1 lunar gravity field as
determined from the Orbiter IIT and Orbiter V convergences are
the following:

C,o = -2.090 x 107
C,p = .213 x 107°
Cyp = 190 x 1074 (48)
Cyp = -330 x 1070
Cyy = 270 x 107>

Since this entire process is one of parameter identification and
the A weighting matrix used is not truly the covariance matrix
of the Kepler element rates, the terms on the diagonal of the

[FTAF]-l matrix are not the variances of the estimated terms.

The normalized non~diagonal terms in the [FTAF] 1 matrix do
yield a measure of correlation between the various pairs of
terms in the solution set. The correlation matrix for this
solution is:




€22 €39 C31 C33
Cho | =07 | -.210 | -.13 .18
Cyy .16 .19 -.64
C39 .87] -.06
Cqy -. 06

The relatively high correlations between both the C and

i 22" ©33
C30, C31 coefficient pairs reflect the inseparability of these

gravity effects in the estimator. Although data from satellites of
both high (I=85°) and relatively low (I=21°) inclinations were used
in this solution, the presence of these correlations reflects the
necessity of additional data from intermediate orbital inclinations.

In order to obtain a quantitative measure of the solu-
tion given by equation(48) a comparison is made between it and
the nominal L1 values using numerically integrated equations of
motion. The comparisons, covering a one day period, (starting
at the same epoch and state vector) are made for both the Lunar
Orbiter III and V orbits. Differences in position and velocity
magnitudes and in each of the Kepler elements for each of these
orbits are shown in Figures 15-22. The position deviations devel-
oped over the Lunar Orbiter V trajectory attain a maximum value
of 120 ft. The velocity errors have a peak value of .08 fps.
For the case of the Lunar Orbiter III trajectory the position
error attains a peak value of 150 ft. and the velocity .12 fps.

SUMMARY AND CONCLUSIONS

This analysis has presented an empirical method for
determining the spherical harmonic coefficients of the lunar
gravity field. Long-period Kepler elements are determined
using a weighted least-squares empirical orbit determination
process. Each of the Kepler elements is represented by an inde-
pendent time function. The long-period perturbing effects of
the earth, sun, and solar radiation are modeled explicitly in
this process. The lunar gravity coefficients are determined
using another weighted least-squares processor which fits the
Lagrange perturbation equations to the estimated Kepler rates.

Pseudo Doppler data have been generated simulating
two different lunar trajectories. The perturbations included
were the L1 lunar gravity field, the earth, sun, and solar
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radiation pressure. Orbit determinations were performed using

the empirical processor and long-period orbital element varia-
tions obtained. The Kepler element rates from these convergences
were used to recover the L1 gravity field. The overall results

of this controlled experiment show that lunar gravity coefficients
can be determined accurately using this method and that it is
dynamically consistent with long-period perturbation theory.
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